博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
[HAOI2011]防线修建
阅读量:5291 次
发布时间:2019-06-14

本文共 2892 字,大约阅读时间需要 9 分钟。

题目描述

近来A国和B国的矛盾激化,为了预防不测,A国准备修建一条长长的防线,当然修建防线的话,肯定要把需要保护的城市修在防线内部了。可是A国上层现在还犹豫不决,到底该把哪些城市作为保护对象呢?又由于A国的经费有限,所以希望你能帮忙完成如下的一个任务:

  1. 给出你所有的A国城市坐标

  2. A国上层经过讨论,考虑到经济问题,决定取消对i城市的保护,也就是说i城市不需要在防线内了

  3. A国上层询问对于剩下要保护的城市,修建防线的总经费最少是多少

你需要对每次询问作出回答。注意单位1长度的防线花费为1。

A国的地形是这样的,形如下图,x轴是一条河流,相当于一条天然防线,不需要你再修建

A国总是有两个城市在河边,一个点是(0,0),一个点是(n,0),其余所有点的横坐标均大于0小于n,纵坐标均大于0。A国有一个不在(0,0)和(n,0)的首都。(0,0),(n,0)和首都这三个城市是一定需要保护的。

说明

数据范围:

30%的数据m<=1000,q<=1000

100%的数据m<=100000,q<=200000,n>1

所有点的坐标范围均在10000以内, 数据保证没有重点

题解

要动态维护一个凸包。还要维护删除操作?

删除麻烦,可以离线,把删除变成插入操作。

一切就简单又自然了。

插入一个点t,就要找到凸包上的第一个大于等于横坐标x的点p,和第一个小于x的点q。即后继前驱

题目很善良,河边点不会删除,所以一定在凸包上,不会有什么边界的锅。

如果在凸包里面那么就直接返回,怎么判断?

如果q和p的斜率在t和p的斜率,t和q的斜率大小之间的话,那么这个点一定不在凸包上。画图可以理解。

反之就一定在凸包上。

然后开始弹出点。不断向右比较斜率,再不断向左比较斜率。

最后把t加入凸包。

删除点的时候,实时更新防线的长度。

不要忘了最后把p、q之间的连边删除。

 

找前驱后继再删除,可以用splay实现。

但是没有必要,set完全可以支持。

代码:

#include
using namespace std;const int N=100000+10;const double inf=19260817.0;int n,m;int cx,cy,far;double now;struct que{ int typ; int id; double ans;}q[2*N];struct po{ int x,y; bool friend operator<(po a,po b){ return a.x
s;set
::iterator it1,it2,it3;double dis(po a,po b){ return sqrt((double)(a.x-b.x)*(a.x-b.x)+(double)(a.y-b.y)*(a.y-b.y));}double slo(po a,po b){
//(x1,y1) -> (x2,y2) if(a.x==b.x){ return a.y>b.y?-inf:inf; } return ((double)a.y-(double)b.y)/((double)a.x-(double)b.x);}void upda(po lp){ //lp.op(); //cout<<" size "<
<
=slo(lp,*it3)){ now-=dis(*it1,*it3); s.erase(it1); it1=it3; it3--; } now+=dis(lp,*it1); s.insert(lp);}int main(){ scanf("%d%d%d",&far,&cx,&cy); scanf("%d",&n);int x,y; for(int i=1;i<=n;i++){ scanf("%d%d",&x,&y); a[i].x=x,a[i].y=y; } scanf("%d",&m); for(int i=1;i<=m;i++){ scanf("%d",&q[i].typ); if(q[i].typ==1) scanf("%d",&q[i].id),die[q[i].id]=1; } po st;st.x=0,st.y=0;s.insert(st); po nd;nd.x=far,nd.y=0;s.insert(nd); po ca;ca.x=cx,ca.y=cy;s.insert(ca); now=dis(st,ca)+dis(ca,nd); for(int i=1;i<=n;i++){ if(!die[i]){ upda(a[i]); } } for(int i=m;i>=1;i--){ if(q[i].typ==2){ q[i].ans=now; } else{ upda(a[q[i].id]); } } for(int i=1;i<=m;i++){ if(q[i].typ==2){ printf("%.2lf\n",q[i].ans); } } return 0;}

总结:

现在我们有了一些斜率优化中,维护凸包的方法。

1.单调队列,适用于斜率有单调性,并且x要有单调性。才可以直接队头弹出,队尾插入。均摊O(1)

2.队列+二分。对于加入点的x有单调性,但是查询的斜率无单调性的时候,就要二分了。

二分到第一个斜率大于/小于查询斜率的点,作为决策点即可。除了队尾加入的时候,为了维护凸包所需,不会从队头弹出点。】

3.set(平衡树)维护。对于一般情况的凸包,可能加入的x在任何位置,查询什么凸包的周长,就必须用set了。

但是,对于斜率优化中,要查询一个第一个和后继/前驱比k大/小的点,因为set是按照x重载的运算符,不能直接lower_bound了。

所以,只能手写一棵splay,(就我所知)别无他法。

具体来说,一个splay树上的节点,按照x排序,而且必须还要记录和后继的斜率slope,和子树内所有后继斜率slope的最小值,便于直接二分。

 

转载于:https://www.cnblogs.com/Miracevin/p/9662176.html

你可能感兴趣的文章
【笨嘴拙舌WINDOWS】实践检验之屏幕取色
查看>>
CRM(四川网脉系统)项目总结
查看>>
常用HTTP状态码和CURL 000问题
查看>>
[leetcode]Valid Sudoku
查看>>
lesson 8:小程序
查看>>
鼠标悬停显示透明文字内容
查看>>
Window_Open详解
查看>>
centos使用--rpm和yum的关系以及基本用法
查看>>
PHP使用引用变量foreach时,切记其他循环不要使用同一个名字的变量
查看>>
第二类斯特林数总结
查看>>
随笔测试
查看>>
IIS Express 配置缓存位置
查看>>
单向链表
查看>>
Linux文件系统管理
查看>>
自己写的分页控件
查看>>
ContactsUtil 工具类 - 转载
查看>>
实验4-6:正弦动态圆
查看>>
docker 学习(五) virtualBox虚拟机安装docker
查看>>
Oracle企业管理框架
查看>>
HTML特效代码大全
查看>>